PERANCANGAN APLIKASI PENENTUAN MENU SEHAT SESUAI GOLONGAN DARAH DENGAN METODE TF-IDF BERBASIS ANDROID

Erfan Hasmin STMIK Dipanegara Jl. P. Kemerdekaan KM.9 Makassar 0411-587194/081343512272 erfan.hasmin@gmail.com

Nurul Aini STMIK Dipanegara Jl. P. Kemerdekaan KM.9 Makassar 0411-587194/081355049881 nurulaini.m11@gmail.com

Abstract

Penyediaan aplikasi berbasis android semakin luas dan jenis aplikasi pun semakin banyak, tetapi masih sulit ditemukannya aplikasi android yang dapat membantu pengguna perangkat mobile untuk memberikan informasi tentang menu dan bahan makanan sehat. Dengan menggunakan algoritma TF-IDF aplikasi ini akan menghitung frekuensi nilai gizi yang ada pada tiap bahan makanan sesuai dengan refrensi gizi menu sehat. Aplikasi android demi mudahkan akses terhadap informasi tersebut, mengingat perangkat mobile telahdapat mengkases internet dimana saja dan kapan saja.

General Terms

Algoritm Implementation

Keywords

Android, TF-IDF, JSON, Mobile Computing

1. Pendahuluan

Dewasa ini, perkembangan teknologi informasi sangat berperan penting dalam berbagai sektor kehidupan manusia. Khususnya pada bidang kesehatan, masih banyak masyarakat saat ini yang belum sadar akan kebutuhan menu makanan yang sehat dan tepat sesuai dengan golongan darah. Baik dari segi bahan makanan maupun nilai nutirisi/gizi yang terkandung dalam menu makanan. Di samping itu juga masyarakat yang menggunakan *smartphone* masih kesulitan dalam menemukan aplikasi *mobile* yang tepat mengenai informasi menu makanan yang sehat sesuai dengan golongan darah.

Untuk membangun sebuah aplikasi yang berjalan pada perangkat *mobile*. Aplikasi ini menggunakan *platform Android*. Karena dibandingkan dengan perangkat *mobile* lainnya, *platform Android* memiliki kelebihan berkembang sangat cepat, bersifat terbuka (*Opensource*), multitasking, kemudahan dalam notifikasi, menyediakan ribuan software pada Android Market dan dapat diakses dengan mudah (kapanpun dan dimanapun). Penulis juga

menggunakan metode *TF-IDF* pada perancangan aplikasi ini untuk menguji kemapuan metode ini dalam mengklasifikasikan menu makanan yang sehat dan tepat sesuai golongan darah.

2. Rumusan Masalah

Berdasarkan latar belakang masalah yang telah diungkapkan, maka penulis mengidentifikasikan permasalahan yang terjadi pada masyarakat sebagai berikut:

- Bagaimana menyajikan informasi mengenai komposisi nutrisi/gizi pada menu sehat berdasarkan golongan darah dimanapun dan kapanpun.
- Bagaimana mengimplementasikan metode TF-IDF untuk penentuan menu sehat.

3. Batasan Masalah

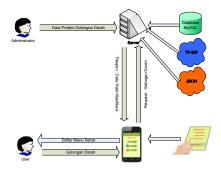
Dari berbagai kemungkinan masalah yang timbul dari pemgumpulan informasi hingga penentuan menu sehat, penulis hanya membatasi masalah pada:

- Menyajikan informasi menu bahan makanan sehat sesuai golongan darah.
- Penyediaan data menu sehat dilengkapi dengan nilai nutrisi/gizi.
- Perangkat mobile yang digunakan bersistem operasi Android.

4. Hasil Dan Pembahasan

4.1 Analisis Sistem

4.1.1 Analisa Kebutuhan Server


ini Pada pembuatan aplikasi server membutuhkan akses jaringan internet dan berupa perangkat laptop dengan spesifikasi yang sangat mendukung dalam menjalankan aplikasi tersebut baik segi hardware maupun software. Untuk hardware dibutuhkan laptop Toshiba dengan spesifikasi processor intel® Core i3 dengan kecepatan 2,3 GHz, kapasitas RAM 1 GB, kapasitas Hardisk 320 GB. Sedangkan untuk software dibutuhkan sistem operasi windows 7, aplikasi browser, xamp, Java Development Kit (JDK), Software Development Kit (SDK), Android Development Tools (ADT), IDE Android yang berupa Eclipse, Android plugin untuk Eclipse, Database Bahan Makanan dan Algoritma TF-IDF.

4.1.2 Analisa Kebutuhan Client

Pada client juga dibutuhkan akses jaringan internet dan beberapa perangkat *hardware* maupun *software*. Seperti *Mobilephone* berbasis *Android* dengan spesifikasi *hardware* berupa processor Dual-Core 1 GHz Cortex-A9, Display 540 x 960 pixel 4.0 inches, kapasitas RAM 1 GB, WLAN Wi-Fi 802.11 b/g/n, kapasistas Memory Internal 16 GB dengan *software* yang dibutuhkan untuk menjalankan aplikasi tersebut yaitu sistem operasi *Android Jelly Bean* 4.1.2.

4.2 Arsitektur Sistem

Gambar asritektur sistem dapat dilihat dari gambar 1 dibawah ini

Gambar 1 Arsitektur Sistem

Dari arsitektur sistem di atas, model perangkat lunak yang paling relevan adalah model memecah modul – modul aplikasi. Menjadi beberapa bagian diantaranya:

- 1. Modul singkronisasi yang akan di *install* di tiap
- 2. Modul Transfer data yang akan di *install* di tiap client
- 3. Modul Memeriksa koneksi yang akan di *install* di tiap client

4.3 Implementasi TF-IDF

Penyelesaian dengan menggunakan metode TF-IDF yaitu dengan mengumpulan data kebutuhan bahan makanan ideal untuk tiap dolongan darah dan data nilai gizi tiap bahan makanan terlebih dahulu. kemudian hitung nilai TF tiap protein, lemak, energi dan kalsium pada tiap data kebutuhan gizi golongan darah A, B, AB dan O. diperoleh rumus:

$$TF = bahan = n/rata-rata \times 100$$

Keterangan rumus:

n : nilai gizi berupa protein, lemak, energi dan kalsium yang terkandung pada bahan makanan.

```
Protein pada gol darah A:
                                  pada gol darah B:
Daging ayam = 18/20 \times 100 = 90 Daging ayam = 0
Daging sapi = 0
                                  Daging sapi
                                                = 18/21
                                  x 100 = 85
              = 16/18 \times 100 = 88 Ikan mas = 16/21 \times 100
Ikan mas
              = 8/18 \times 100 = 33 Roti putih
Roti putih
Telur ayam
             = 12/18 \times 100
                                 Telur ayam
                                                = 12/21 x
                                  100 = 57
Udang
              = 0
                                 Udang
                                                =0
              = 0
Kentang
                                  Kentang
                                                =0
Ikan gabus kering = 58/18 x 100 Ikan gabus kering =
                                 58/21 \times 100 = 276
              = 13/18 \times 100
Telur bebek
                                 Telur bebek
                                                =0
Mie
              = 6/18 \times 100
                                 Mie
                                           =0
```

Protein pada gol darah AB pada gol darah O: Daging ayam = $18/20 \times 100$ Daging ayam = 18/11 x100 = 163Daging sapi = 18/11 xDaging sapi = $18/20 \times 100$ 100 = 163Ikan mas = 0Ikan mas = 16/11 x100 = 145Roti putih $= 8/20 \times 100$ Roti putih =0Telur ayam Telur ayam = 0= 12/11 x100 = 109= 0Udang *Udang* = $21/11 \times 100$ $= 2/20 \times 100$ *Kentang* = $2/11 \times 100$ Kentang Ikan gabus kering = $58/20 \times 100$ Ikan gabus kering = 0Telur bebek Telur bebek = 13/11 x=0100 =0Mie = 0Mie

Untuk memperoleh nilai TF lemak, energi dan kalsium pada tiap bahan makanan, menggunakan cara yang sama seperti diatas. Setelah melakukan perhitungan TF, selanjutnya menetukan DF dengan melihat banyaknya data yang terisi bukan nilai pada bahan makana, kemudian dijumlahkan. Selanjutnya mencari nilai iDF dengan rumus:

$W = TF \times iDF$

Daging ayam(A) = $90 \times 0.12 = 10.8$

 $Daging\ ayam(B) = 0$

Daging $ayam(AB) = 90 \times 0.12 = 10.8$

Daging $ayam(O) = 163 \times 0,12 = 19,56$

 $Daging \, sapi(A) = 0$

Daging $sapi(B) = 85 \times 0.12 = 10.2$

Daging $sapi(AB) = 90 \times 0.12 = 10.8$

 $Daging \ sapi(O) = 163 \times 0,12 = 19,56$

 $Ikan \ mas(A) = 88 \times 0,12 = 10,56$

 $Ikan \ mas(B) = 76 \times 0.12 = 9.12$

 $Ikan\ mas(AB) = 0$

 $Ikan \ mas(O) = 145 \times 0,12 = 17,4$

 $Roti\ puith(B) = 0$

Roti putih(A) = 33 x 0,30 = 9,9

Roti putih(AB) = $40 \times 0.30 = 12$

 $Roti\ putih(O) = 0$

 $Telur\ ayam(A) = 100 \times 0,12 = 12$

 $Telur\ ayam(B) = 57 \times 0.12 = 6.84$

 $Telur\ ayam(AB) = 0$

 $Telur\ ayam(O) = 109 \times 0.12 = 13.08$

Udang(B) = 0

Udang(A) = 0

Udang(AB) = 0

 $Udang(O) = 190 \times 0,60 = 114$

Ikan gabus kering(A) = 322 x 0,12 = 38,64

Ikan gabus kering(B) = 0

Ikan gabus kering(AB) = 290 x 0,12 = 34,8

Ikan gabus $kering(O) = 3 \times 0,12 = 0,36$

Kentang(A) = 0

Kentang(B) = 0

 $Kentang(AB) = 10 \times 0.30 = 3$

 $Kentang(O) = 18 \times 0.30 = 5.4$

 $Mie(A) = 32 \times 0.60 = 19.2$

Mie(O) = 0

Mie(AB) = 0

Mie(B) = 0

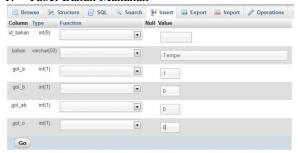
 $Telur\ bebek(B) = 0$

 $Telur\ bebek(A) = 72 \times 0.30 = 21.6$

 $Telur\ bebek(AB) = 0$

 $Telur\ bebek(O) = 118 \times 0.30 = 35.4$

Setelah melakukan metode perhitungan TF-IDF, maka dapat dilihat data bahan makanan yang tepat sesuai golongan darah pada tabel 1.


Gol Darah	Bahan	Nilai Protein		
	Roti putih	9,9		
	Ikan mas	10,56		
Α	Daging ayam	10,8		
Λ	Telur ayam	12		
	Mie	19,2		
	Ikan gabus kering	38,64		
	Telur ayam	6,84		
В	Ikan mas	9,12		
Б	Daging sapi	10,2		
	Daging ayam	10,8		
	Kentang	3		
AB	Daging sapi	10,8		
Ab	Roti putih	12		
	Ikan gabus	34,8		
	Ikan gabus kering	0,36		
	Kentang	5,4		
0	Telur ayam	13,08		
U	Ikan mas	17,4		
	Daging ayam	19,56		
	Daging sapi	19,56		
	Telur bebek	35,4		
	Udang	114		

5. Hasil

5.1 Database Server

Database berada pada server terdiri dari dua tabel

1. Tabel Bahan Makanan

Gambar 2. Tabel Bahan Makanan

2. Tabel Nilai Gizi

■ Bro	wse		₽ SQL	Search	∄-i Insert	Export	■ Import	→ Operations	● Tra	
Column	Туре	Function		Null	I Value					
id	int(9)			•						
id_bahan	int(9)			•	11					
protein	float			•	10					
lemak	float			•	20					
energi	float			•	30					
kalsium	float				40					
kalsium Go	float			•	40					

Gambar 3. Tabel Nilai Gizi

5.2 Client Android

Antarmuka aplikasi android, pad aplikasi inilah algortima TF-iDF di impelementasikan

Gambar 4. Aplikasi Pemilihan Golongan darah

Gambar 5 . Hasil Nilai Gizi pad aplikasi Android

6. Saran Dan Kesimpulan

6.1 Kesimpulan

Dengan selesainya eksperimen ini, maka diperoleh kesimpulan sebagai berikut :

- 1. Kebutuhan gizi ideal pada protein, lemak, energi dan kalsium sesuai golongan darah dapat ditentukan dengan menggunakan metode perhitungan algoritma TF-IDF.
- Aplikasi Menu Sehat ini disajikan dengan menampilkan beberapa pilihan yang memudahkan pengguna smartphone dalam menyajikan informasi kebutuhan gizi ideal sesuai golongan darah

6.2 Saran

Adapaun saran – saran dalam penelitian ini adalah :

- 1. Penerapan selanjutnya dapat dikembangkan dengan menambahkan lebih banyak lagi data bahan makanan sesuai golongan darah, sehingga program ini lebih lengkap akan informasi tentang kebutuhan gizi ideal.
- 2. Penerapan selanjutnya dapat dikembangkan dengan menambahkan informasi tentang menu sehat dan informasi seputar tiap golongan darah.

Daftar Pustaka

- [1] Nazruddin Safaat H. 2011. Pemrograman Aplikasi Mobile Smartphone dan Tablet PC Berbasis Android. Informatika Bandung
- [2] Thomas H. C., Charles E. L., Ronald L. R. 2001, Introduction to Algorithms, Second Edition , Massachusetts Institute of Technology
- [3] Aziz, M. I. (2010). Development Program Application To The Measurement Of Documents Resemblance Text mining, TF-IDF, And Vector space model Algoritm.