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Abstrak 
Tren deep learning saat ini didominasi oleh model skala miliaran parameter, yang 

berhasil mencapai kinerja state-of-the-art namun secara inheren menimbulkan tantangan besar 
dalam biaya komputasi, konsumsi energi, dan efisiensi deployment di lingkungan dengan sumber 
daya terbatas. Permasalahan ini menimbulkan kesenjangan (gap) serius antara kinerja puncak 
AI dan adopsi praktisnya pada edge computing, menuntut pengembangan arsitektur yang fokus 
pada efisiensi parameter tinggi dan kemampuan penalaran yang superior alih-alih peningkatan 
ukuran. Penelitian ini mengimplementasikan dan mengevaluasi Tiny Recursion Model (TRM), 
sebuah arsitektur yang berfokus pada penalaran rekursif dengan jumlah parameter yang 
minimal, pada tugas klasifikasi data tabular. Metode yang digunakan adalah implementasi 
kustom TRM dalam Keras/TensorFlow, di mana jaringan saraf dua lapis tunggal dengan bobot 
bersama melakukan pemurnian prediksi secara iteratif (rekursi 10 langkah). Dataset yang 
digunakan meliputi tiga kasus klasifikasi standar: Iris, Breast Cancer, dan Diabetes. Hasil 
penelitian menunjukkan bahwa TRM yang sangat efisien, dengan hanya ribuan parameter, 
berhasil mencapai akurasi pengujian yang kompetitif (hingga ≈ 97% untuk Iris, ≈ 94% untuk 
Breast Cancer, dan ≈ 78% untuk Diabetes). Temuan ini memvalidasi efektivitas TRM sebagai 
solusi deep learning yang ringan dan terfokus pada penalaran untuk tugas klasifikasi.  
 
Kata kunci—Tiny Recursion Model (TRM), Klasifikasi, Efisiensi Parameter, Penalaran 
Rekursif, Deep Learning. 
 
 

Abstract 
 Current trends in deep learning are dominated by models with billions of parameters, 

which achieve state-of-the-art performance but inherently introduce significant challenges in 
terms of computational cost, energy consumption, and deployment efficiency in resource-
constrained environments. This situation creates a serious gap between peak AI performance and 
its practical adoption in edge computing, thereby necessitating the development of architectures 
that prioritize high parameter efficiency and superior reasoning capability rather than sheer 
model scale. This study implements and evaluates the Tiny Recursion Model (TRM), an 
architecture designed to emphasize recursive reasoning with a minimal number of parameters, 
for tabular data classification tasks. The proposed approach employs a custom TRM 
implementation in Keras/TensorFlow, where a two-layer neural network with shared weights 
iteratively refines its predictions through recursive processing over ten steps. The experiments 
are conducted on three standard classification datasets: Iris, Breast Cancer, and Diabetes. The 
results demonstrate that the highly efficient TRM, consisting of only thousands of parameters, 
achieves competitive test accuracies (up to approximately 97% on Iris, 94% on Breast Cancer, 
and 78% on Diabetes). These findings validate the effectiveness of TRM as a lightweight deep 
learning solution that emphasizes reasoning-centric learning for classification tasks. 
 
Keywords—Tiny Recursion Model (TRM), Classification, Parameter Efficiency, Recursive 
Reasoning, Deep Learning. 
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1. PENDAHULUAN 

Tren deep learning saat ini didominasi oleh model skala miliaran parameter, yang berhasil 
mencapai kinerja state-of-the-art, namun secara inheren menimbulkan tantangan besar dalam 
biaya komputasi, konsumsi energi, dan efisiensi deployment di lingkungan dengan sumber daya 
terbatas (edge computing). Fenomena "Bigger is Better" ini telah menciptakan krisis efisiensi [1], 
di mana hanya sedikit laboratorium dengan sumber daya masif yang mampu mengembangkan 
model SOTA (State-of-the-Art) terbaru. Keterbatasan ini menghambat adopsi AI canggih di 
lingkungan komputasi terbatas dan meningkatkan carbon footprint global dari pelatihan AI [2]. 
Filosofi di balik Tiny Recursion Model (TRM) adalah tantangan langsung terhadap paradigma 
ini, dengan berfokus pada peningkatan kemampuan penalaran melalui penggunaan bobot yang 
dibagikan secara rekursif, bukan dengan menumpuk lapisan unik yang masif. Model 
konvensional seperti Transformer cenderung unggul dalam memorasi pola data skala besar, 
namun seringkali menunjukkan keterbatasan pada tugas yang memerlukan penalaran, manipulasi 
simbolik, atau perbaikan jawaban secara iteratif [3]. TRM pada awalnya dikembangkan untuk 
tugas-tugas penalaran diskrit dan kompleks, seperti memecahkan Sudoku dan puzzle ARC-AGI, 
di mana model kecil dengan 7 juta parameter terbukti mengungguli LLM raksasa karena 
metodologi pemecahan masalahnya yang iteratif. Pendekatan TRM memanfaatkan rekursi (time-
unrolling) untuk secara efektif meningkatkan kedalaman komputasi model tanpa meningkatkan 
jumlah parameter, menawarkan alternatif yang layak dan efisien.  

Sejumlah penelitian telah menyoroti masalah skalabilitas model deep learning modern. 
Penelitian oleh Strubell et al. [2] dan Schwartz et al. [1] secara kritis membahas carbon footprint 
dan biaya finansial dari pelatihan model NLP yang besar, menekankan perlunya arsitektur yang 
lebih efisien. Lebih lanjut, analisis oleh Kaplan et al. [4] menunjukkan bahwa kinerja model 
seringkali berskala secara logaritik dengan jumlah parameter, data, dan komputasi, yang secara 
tidak langsung membenarkan tren penskalaan. Namun, penelitian oleh Rae et al. [5] mengenai 
Chinchilla menunjukkan bahwa pelatihan optimal memerlukan korelasi ketat antara ukuran model 
dan jumlah data, memperkuat argumen untuk desain arsitektur yang lebih hemat. Kebutuhan 
untuk model yang ringan dan mudah digunakan di perangkat edge juga didukung oleh studi He 
et al. [6] tentang kompresi model dan kuantisasi. Konsep rekursi dalam jaringan saraf bukanlah 
hal baru. Recursive Neural Networks (RNNs) digunakan oleh Socher et al. [7] untuk analisis 
sentimen berdasarkan struktur sintaksis kalimat. Namun, yang lebih relevan dengan filosofi TRM 
adalah model yang menggunakan loop iteratif untuk pemurnian jawaban. Hierarchical Reasoning 
Model (HRM) [8] menjadi prekursor langsung TRM, yang menggunakan dua jaringan terpisah 
untuk penalaran dan perencanaan. Studi oleh Lake et al. [3] dan De Raedt et al. [9] meneliti 
pentingnya penalaran simbolik dan rekursif untuk generalisasi manusia, terutama pada tugas 
meta-learning dan program synthesis. Pendekatan iteratif juga dieksplorasi dalam konteks visual, 
di mana model seperti Recurrent Attention Mechanism (RAM) oleh Mnih et al. [10] 
menggunakan langkah berulang untuk fokus pada bagian-bagian penting dari input. Dalam bidang 
pemodelan sekuens, Universal Transformer oleh Dehghani et al. [11] juga menerapkan jaringan 
yang sama secara rekuren pada urutan input temporal, menciptakan kedalaman komputasi melalui 
waktu, serupa dengan konsep TRM. Untuk mengatasi masalah ukuran model, beberapa penelitian 
berfokus pada teknik efisiensi parameter. Karya Lan et al. [12] memperkenalkan ALBERT, yang 
menggunakan parameter sharing di antara lapisan Transformer, secara signifikan mengurangi 
jumlah parameter. Konsep weight tying seperti yang digunakan pada model RNN tradisional [13] 
juga menjadi dasar teoritis mengapa TRM berfungsi: menggunakan parameter yang sama untuk 
komputasi yang berbeda membantu model mempelajari representasi yang lebih umum dan 
fungsional. Penelitian tentang knowledge distillation oleh Hinton et al. [14] juga menunjukkan 
bahwa model kecil dapat mencapai kinerja model besar dengan berfokus pada pemahaman relasi 
internal data. Selain itu, teknik pruning dan kuantisasi [15], [16] juga telah terbukti mengurangi 
ukuran model pasca-pelatihan, melengkapi arsitektur yang efisien seperti TRM. Dalam domain 
klasifikasi data tabular, model konvensional seperti Random Forest dan Gradient Boosting masih 
dominan [17]. Namun, penelitian oleh Grinsztajn et al. [18] mulai membandingkan efektivitas 
Transformer dan MLP dengan model klasik. Kebutuhan akan model deep learning yang efisien 
dan andal [19], [20] untuk klasifikasi tabular di edge semakin meningkat [21], terutama untuk 
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aplikasi medis dan monitoring industri. TRM menempatkan dirinya sebagai jembatan antara 
kebutuhan akan penalaran mendalam dan tuntutan efisiensi komputasi untuk tugas klasifikasi data 
terstruktur. 

Penelitian ini bertujuan untuk menguji hipotesis bahwa prinsip inti TRM dapat berhasil 
diterapkan pada tugas klasifikasi data tabular standar, mengadaptasi dan mengimplementasikan 
arsitektur dasar TRM dalam framework Keras/TensorFlow, Mengevaluasi kinerja model TRM 
yang parameter-efisien pada tiga tugas klasifikasi standar (Iris, Breast Cancer, dan Diabetes), serta 
Menganalisis bagaimana proses peningkatan rekursif berkontribusi pada akurasi klasifikasi pada 
data tabular. 

 
 

2. METODE PENELITIAN 

Penelitian ini menerapkan arsitektur Tiny Recursion Model (TRM) yang dimodifikasi 
pada tiga dataset klasifikasi tabular standar. Metodologi ini dirancang untuk memvalidasi 
efektivitas arsitektur rekursif dan efisien parameter pada tugas klasifikasi umum. 

2.1 Dataset 
Tiga dataset klasifikasi yang umum digunakan dan memiliki karakteristik yang berbeda 

dipilih untuk menguji generalisasi model dengan pembagian data 80% untuk training dan 20% 
untuk testing.  

1. Iris. Dataset standar untuk klasifikasi dengan 150 sampel dan 4 fitur numerik. Tujuannya 
adalah mengklasifikasikan spesies bunga (3 kelas). Dataset ini digunakan untuk menguji 
kemampuan dasar model dalam mengidentifikasi batas keputusan linier dan non-linier. 

2. Breast Cancer (Wisconsin). Dataset yang melibatkan 569 sampel dan 30 fitur, bertujuan 
mengklasifikasikan tumor sebagai jinak (Benign) atau ganas (Malignant) (2 kelas). 
Dataset ini menguji kinerja TRM pada dimensi fitur yang lebih tinggi dan masalah biner. 

3. Diabetes (Pima Indians). Dataset yang melibatkan 768 sampel dan 8 fitur diagnostik, 
bertujuan memprediksi apakah seorang pasien akan menderita diabetes (2 kelas). Dataset 
ini dipilih karena mengandung nilai yang hilang (diwakili sebagai nol), yang menguji 
ketahanan model terhadap data yang bising (meskipun penanganan nilai hilang tidak 
eksplisit). 

2.2 Parameter Eksperimen 
Untuk menjaga fokus pada efisiensi dan konsistensi, model TRM dilatih menggunakan 

beberapa parameter yang dapat dilihat pada tabel berikut: 
Tabel 1 Parameter 

Parameter Nilai Deskripsi 
Epochs  100 Jumlah iterasi pelatihan. 
Batch Size 16 Jumlah sampel per pembaruan gradien. 
Optimizers Adam Algoritma optimasi standar. 
Learning Rate 10-3 Tingkat pembelajaran. 
Loss Function Categorical 

Crossentropy 
Digunakan karena semua target diubah menjadi 
one-hot encoded. 

Metriks Evaluasi Akurasi Metrik utama kinerja model. 
Langkah Rekursi  10 Jumlah kali Core Network diulang. 

2.3 Arsitektur Model 
Tiny Recursion Model (TRM) diimplementasikan sebagai model kustom Keras yang 

terdiri dari dua komponen utama dengan bobot bersama (weight sharing):  
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1. TRM Core Network (f): Jaringan saraf dua lapis kecil (Dense) yang bobotnya dibagikan 
dan diterapkan berulang kali. Jaringan ini menerima concatenated input yang terdiri dari 
Embedded Input (x), Current Answer Embedding (y), dan Latent State (z). 

2. External Layers: Lapisan Embedding awal dan lapisan Output akhir yang unik untuk 
model. 

 
Gambar 1 Arsitektur Model 

Gambar 1 merupakan arsitektur dari TRM model yang terdiri dari beberapa komponen 
sebagai berikut: 

1. Input Layer: Menerima data fitur (X) 
2. Embedding Layer 
3. Lapisan Dense unik yang memproyeksikan input fitur (X) menjadi representasi dimensi 

tersembunyi (x), serta menginisialisasi Answer Embedding awal (y0) dan Latent State 
awal (z0). 

4. Recursive Loop: Bagian utama, di mana TRM Core Network (f) diulang. 
a. Input ke f: [x, yt, zt]. 
b. Output f: Menghasilkan pembaruan status laten (zt+1) dan pembaruan answer 

embedding (yt+1) 
c. Weight Sharing: f mempertahankan bobot yang sama di semua 10 langkah 

perulangan. 
5. Output Layer: Lapisan Dense unik terakhir yang menerima Answer Embedding yang 

dimurnikan (yT) dan memproyeksikannya ke ruang kelas, menggunakan aktivasi softmax 
untuk menghasilkan probabilitas prediksi (P). 
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2.4 Cara Kerja Model Pada Kasus Klasifikasi 
TRM adalah pendekatan minimalis untuk penalaran rekursif yang menantang tren model 

AI yang semakin besar. TRM hanya menggunakan satu jaringan saraf yang sangat kecil, 
seringkali hanya dengan 7 juta parameter (7M), yang jauh lebih sedikit dibandingkan model 
bahasa besar (LLM) seperti DeepSeek R1 atau Gemini, menggunakan jaringan saraf dua lapis 
tunggal yang parameter-parameternya dibagikan dan diterapkan secara berulang (rekursif). 
Sementara untuk kasus klasifikasi TRM menggunakan mekanisme draft-and-refine untuk 
penalaran iteratif yang disesuaikan untuk klasifikasi yang meliputi beberapa tahap sebagai 
berikut: 

1. Inisialisasi. Input fitur disematkan ke vektor x. Vektor Answer Embedding (y) dan Latent 
State (z) diinisialisasi. y0 bertindak sebagai tebakan atau representasi jawaban awal. 

2. Fase Rekursif. Selama 10 langkah (T=10) 
a. Pada setiap langkah t, status penalaran saat ini (zt) dan answer embedding saat 

ini (yt) digabungkan dengan fitur input (x). 
b. Input gabungan ini dimasukkan ke TRM Core Network (), yang secara serentak 

memproses dan memurnikan kedua status tersebut, menghasilkan zt+1 dan yt+1. 
c. z (Latent State): Berfungsi sebagai scratchpad mental model, menyimpan 

informasi penting yang dibutuhkan untuk langkah penalaran berikutnya. 
d. y (Answer Embedding): Secara bertahap bergeser mendekati representasi yang 

optimal untuk kelas yang benar. 
3. Prediksi Akhir: Setelah langkah rekursi terakhir, Answer Embedding yang dimurnikan 

(y10) dimasukkan ke lapisan Output akhir. Lapisan ini melakukan transformasi akhir dan 
menghasilkan probabilitas kelas melalui fungsi softmax.  

 
Gambar 2. Cara Kerja Model Pada Kasus Klasifikasi 
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3. HASIL DAN PEMBAHASAN 

3.1 Analisis Hasil Dataset Iris 

3.1.1 Classification Report dan Akurasi Akhir 
Gambar 3 menunjukkan bahwa kinerja model sangat kuat dan akurat. Ini menunjukkan 

kemampuan TRM yang kecil dan rekursif untuk memisahkan ketiga kelas Iris dengan batasan 
yang jelas. Nilai yang sangat tinggi untuk ketiga metrik inti menunjukkan bahwa model memiliki 
keseimbangan yang baik antara memprediksi positif dengan benar (Precision) dan menemukan 
semua positif yang relevan (Recall). Model mencapai kinerja sempurna untuk kelas ini, 
menunjukkan pemisahan linier yang sangat jelas. Variasi kecil ini mengindikasikan bahwa satu 
sampel sulit diklasifikasikan dengan benar (dikonfirmasi oleh Confusion Matrix di bawah), 
namun secara keseluruhan kinerja kelas non-trivial tetap luar biasa.  

 
 

Gambar 3 Classification Report & Akurasi Dataset Iris 

3.1.2 Akurasi dan Loss per Epoch 
Gambar 4 menjelaskan bahwa akurasi pelatihan mencapai overfit (1.00) dengan cepat, 

namun Akurasi Validasi tetap tinggi dan stabil di 0.97 sejak sekitar Epoch 50. Stabilitas ini 
menunjukkan bahwa model TRM mampu mempertahankan kemampuan generalisasi pada data 
yang belum pernah dilihat, meskipun dengan parameter yang sangat terbatas. Peningkatan 
perlahan pada Loss Validasi (overfitting ringan) dikarenakan Akurasi Pelatihan mencapai 1.00, 
namun peningkatannya minimal. Hal ini menunjukkan bahwa regularization implisit dari bobot 
bersama TRM membantu mengendalikan overfitting yang parah. 

 
Gambar 4 Akurasi dan Loss Dataaset Iris 

3.1.3 Confusion Matrix 
Gambar 5 merupakan confusion matrix dataset iris yang menjelaskan bahwa Hanya satu 

sampel yang diklasifikasikan salah. Yaitu, satu sampel dari True Label 1 (versicolor) 
diklasifikasikan sebagai Predicted Label 2 (virginica). Hasil yang hampir sempurna dimana hanya 
Kelas 1 yang memiliki satu kesalahan prediksi, yang konsisten dengan Recall 0.90 pada 
Classification Report. 
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Gambar 5 Confusion Matrix Dataset Iris 

3.2 Analisis Hasil Dataset Breast Cancer 

3.2.1 Classification Report dan Akurasi Akhir 
Gambar 6 menjelaskan bahwa akurasi yang sangat baik untuk tugas medis dengan 

dimensi fitur yang tinggi. Ini membuktikan bahwa mekanisme penalaran rekursif TRM efektif 
dalam memproses dan memilah fitur-fitur yang relevan. Model sangat baik dalam 
mengidentifikasi kasus ganas yang sebenarnya (95% dari semua kasus ganas ditemukan), yang 
sangat krusial dalam diagnosis medis (False Negatives diminimalisir). Namun, Precision yang 
sedikit lebih rendah (0.89) berarti ada beberapa kasus jinak yang salah diprediksi sebagai ganas. 
Model sangat presisi dalam memprediksi tumor jinak (hanya 3% kesalahan), tetapi melewatkan 
beberapa kasus jinak yang diklasifikasikan sebagai ganas. Sebagai tambahan, Nilai rata-rata 
tinggi menunjukkan keseimbangan yang kuat secara keseluruhan. 

 
Gambar 6 Classification Report dan Akurasi Dataset Breast Cancer 

3.2.2 Akurasi dan Loss per Epoch 
Gambar 7 menjelaskan bahwa akurasi validasi menunjukkan stabilitas yang sangat baik 

setelah Epoch 50. Model mencapai kinerja puncaknya relatif cepat. Stabilitas ini menunjukkan 
bahwa TRM yang kecil tidak terlalu sensitif terhadap data pelatihan, mempertahankan 
kemampuan generalisasi yang kuat. Kesenjangan yang lebar antara Loss Pelatihan dan Loss 
Validasi. Meskipun Akurasi Validasi tetap stabil, peningkatan Loss Validasi yang stabil 
menunjukkan bahwa model mulai menghafal detail data pelatihan, bukan lagi meningkatkan 
kemampuan generalisasinya. Ini wajar mengingat TRM adalah model yang sangat efisien. 

 
Gambar 7 Akurasi dan Loss Dataset Breast Cancer 
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3.2.3 Confusion Matrix 
Gambar 8 menjelaskan bahwa dataset tidak seimbang, Kelas 1 lebih banyak (72 sampel). 

5 kasus tumor ganas (True Label 0) salah diprediksi sebagai jinak, 2 kasus jinak (True Label 1) 
salah diprediksi sebagai ganas. Kesalahan FN (5 sampel) lebih banyak terjadi. Dalam konteks 
medis, False Negative (diagnosis "jinak" pada kasus yang sebenarnya "ganas") adalah kesalahan 
yang paling fatal. Meskipun akurasi tinggi, TRM perlu dioptimalkan lebih lanjut untuk 
meminimalkan False Negatives. 

 
Gambar 8 Confusion Matrix Dataset Breast Cancer 

3.3 Analisis Hasil Dataset Breast Cancer 

3.3.1 Classification Report dan Akurasi Akhir 
Gambar 9 menunjukkan bahwa akurasi menurun dibandingkan dua dataset sebelumnya. 

Ini wajar karena kompleksitas dan sifat noisy dari Dataset Diabetes (nilai nol yang ambigu dan 
rasio fitur-sampel yang berbeda). Nilai Precision seimbang untuk kedua kelas, menunjukkan 
bahwa ketika model memprediksi Non-Diabetes (0) atau Diabetes (1), prediksinya cukup andal. 
Model lebih baik dalam mengidentifikasi individu Non-Diabetes (Recall 0.82) dibandingkan 
individu Diabetes (Recall 0.72). Ini berarti model melewatkan cukup banyak kasus diabetes yang 
sebenarnya (tingginya False Negatives). Nilai F1 yang lebih rendah ini mencerminkan tantangan 
inherent dataset dan menunjukkan bahwa model TRM pada konfigurasi ini belum sepenuhnya 
optimal untuk dataset ini. 

 
Gambar 9 Classification Report dan Akurasi Dataset Diabetes 

 

3.3.2 Akurasi dan Loss per Epoch 
Gambar 10 menjelaskan bahwa akurasi pelatihan sangat fluktuatif (turun naik tajam) 

hingga mencapai 1.00. Akurasi Validasi sangat rendah dan sangat fluktuatif, berkisar antara 0.65 
hingga 0.80. Fluktuasi ekstrem, terutama pada Akurasi Validasi, menunjukkan bahwa model 
kesulitan untuk menemukan permukaan keputusan yang stabil. Setiap pembaruan bobot 
tampaknya memiliki dampak besar pada generalisasi model. Loss Pelatihan mendekati 0, tetapi 
Loss Validasi meningkat tajam dan menunjukkan lonjakan ekstrem, mencapai puncak di atas 
2.50. Terjadi overfitting yang parah dan Loss Validasi menunjukkan tren divergensi 
(menyimpang jauh) dari Loss Pelatihan. Lonjakan Loss Validasi yang tajam mengindikasikan 
bahwa model kecil TRM, meskipun rekursif, mungkin tidak memiliki kapasitas atau 
regularization yang cukup untuk menstabilkan diri pada data yang sangat noisy seperti Diabetes. 



       n          ISSN: 1978-1520 

IJCCS  Vol. x, No. x,  July 201x :  first_page – end_page 

136 

 
Gambar 10 Akurasi dan Loss Dataset Diabetes 

3.3.3 Confusion Matrix 
Gambar 11 menunjukkan bahwa 11 kasus diabetes (True Label 1) salah diprediksi 

sebagai Non-Diabetes. 9 False Positives (FP): 9 kasus Non-Diabetes (True Label 0) salah 
diprediksi sebagai Diabetes. Model menunjukkan bias yang sedikit lebih tinggi terhadap prediksi 
kelas 0 (Non-Diabetes), yang menyebabkan tingginya False Negatives. Hal ini konsisten dengan 
Recall yang lebih rendah pada Kelas 1 (Diabetes). 

 
Gambar 11 Confusion Matrix Dataset Diabetes 

3.4 Ablation Study dan Komparasi Model 
Untuk mengatasi overfitting yang parah dan fluktuasi Loss Validasi yang ekstrem pada 

Dataset Diabetes (yang terlihat pada model TRM baseline), dilakukan Ablation Study dengan 
membandingkan tiga konfigurasi model: 

1. TRM Baseline: Tanpa regularization eksplisit. 
2. TRM + Dropout: Menambahkan lapisan Dropout (20%) di TRM Core 
3. TRM + L1/L2 Regularization: Menambahkan penalti L1 (10-5) dan L2 (10-4) pada bobot 

kernel lapisan Dense di TRM Core. 

Hasil eksperimen menunjukkan bahwa penambahan Dropout (strategi pemaksaan 
sparsitas) justru menyebabkan underfitting dan menurunkan Akurasi Validasi secara 
signifikan.Sebaliknya, penambahan L1/L2 Regularization mampu mengontrol overfitting dengan 
menekan nilai bobot, namun tanpa mematikan neuron secara permanen, yang seharusnya ideal 
untuk model berbobot bersama. Classification Report dan Akurasi dapat dilihat pada gambar 12.  
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Gambar 12 Classification Report dan Akurasi Ablation Study Dataset Diabetes 
Sementara untuk Akurasi dan Loss serta Confusion Matrix di tunjukkan pada gambar 13 

dan 14.  

 
Gambar 13 Akurasi dan Loss Ablation Study Dataset Diabetes 

 
Gambar 11 Confusion Matrix Ablation Study Dataset Diabetes 

Sebagai tambahan, Tabel 2 menyajikan perbandingan akurasi pengujian TRM dengan 
model-model machine learning dan deep learning konvensional yang relevan dari literatur. 

Dataset TRM SVM Random Forest MLP 
Iris ≈96.67%  ≈96.00% [22] ≈96.10% [23] ≈96.00% [22] 
Breast Cancer ≈93.86%  ≈97.80% [24] ≈98.50% [25] ≈95.00% [26] 
Diabetes ≈78.00% ≈86.00% [27] ≈77.00% [28] ≈77.54% [29] 
 
 

4. KESIMPULAN 

Penelitian ini berhasil mengimplementasikan konsep Tiny Recursion Model (TRM) pada 
kasus klasifikasi data tabular, memvalidasi hipotesis bahwa arsitektur yang sangat efisien dalam 
parameter dapat mencapai kinerja kompetitif dengan memanfaatkan penalaran rekursif. Model 
TRM kustom, yang beroperasi dengan bobot bersama dan mekanisme draft-and-refine iteratif, 
terbukti efektif pada berbagai jenis dataset. Temuan utama meliputi: 
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1. TRM mencapai akurasi luar biasa sebesar 96.67% pada Dataset Iris dan 93.86% pada 
Dataset Breast Cancer. Kinerja ini menunjukkan bahwa TRM unggul dalam memproses 
data dengan batas keputusan yang relatif jelas, memanfaatkan effective depth rekursifnya 
untuk memurnikan representasi fitur. 

2. Meskipun model pelatihan mencapai overfitting ringan (akurasi pelatihan 100%), 
Akurasi Validasi pada Iris dan Breast Cancer tetap stabil, membuktikan kemampuan 
TRM untuk mempertahankan generalisasi pada tugas-tugas yang terstruktur dengan baik. 

3. Kinerja TRM menurun signifikan pada Dataset Diabetes (akurasi 79%) yang memiliki 
tantangan data yang noisy dan ambigu (nilai nol). Fluktuasi Loss Validasi yang ekstrem 
dan divergensi Loss yang parah pada kasus ini menunjukkan bahwa model TRM yang 
sangat kecil, tanpa regularization tambahan, rentan terhadap overfitting dan 
ketidakstabilan ketika dihadapkan pada data yang lebih kompleks dan kurang terstruktur. 

 
 

5. SARAN 

Berdasarkan hasil eksperimen dan keterbatasan yang teridentifikasi, beberapa saran untuk 
pengembangan dan penelitian di masa depan adalah: 

1. Mengingat tingginya overfitting yang teramati pada Loss Validasi, terutama pada Dataset 
Breast Cancer dan Diabetes, disarankan untuk menguji penambahan teknik regularization 
eksplisit seperti Dropout atau L2 Regularization langsung di dalam TRM Core Network 
untuk menstabilkan pelatihan.  

2. Melakukan eksperimen dengan jumlah langkah rekursi yang bervariasi. Mungkin Dataset 
Diabetes memerlukan langkah penalaran yang lebih banyak untuk memproses ambiguitas 
data, atau justru memerlukan $\text{T}$ yang lebih sedikit untuk mencegah overfitting 
yang cepat. 

3. Menerapkan strategi imputation yang lebih canggih (misalnya, Mean/Median Imputation 
atau K-Nearest Neighbors Imputation) pada Dataset Diabetes untuk mengganti nilai nol 
yang ambigu, sebelum dimasukkan ke TRM. Hal ini dapat meningkatkan stabilitas dan 
akurasi secara keseluruhan. 
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