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Abstrak

Tren deep learning saat ini didominasi oleh model skala miliaran parameter, yang
berhasil mencapai kinerja state-of-the-art namun secara inheren menimbulkan tantangan besar
dalam biaya komputasi, konsumsi energi, dan efisiensi deployment di lingkungan dengan sumber
daya terbatas. Permasalahan ini menimbulkan kesenjangan (gap) serius antara kinerja puncak
Al dan adopsi praktisnya pada edge computing, menuntut pengembangan arsitektur yang fokus
pada efisiensi parameter tinggi dan kemampuan penalaran yang superior alih-alih peningkatan
ukuran. Penelitian ini mengimplementasikan dan mengevaluasi Tiny Recursion Model (TRM),
sebuah arsitektur yang berfokus pada penalaran rekursif dengan jumlah parameter yang
minimal, pada tugas klasifikasi data tabular. Metode yang digunakan adalah implementasi
kustom TRM dalam Keras/TensorFlow, di mana jaringan saraf dua lapis tunggal dengan bobot
bersama melakukan pemurnian prediksi secara iteratif (rekursi 10 langkah). Dataset yang
digunakan meliputi tiga kasus klasifikasi standar: Iris, Breast Cancer, dan Diabetes. Hasil
penelitian menunjukkan bahwa TRM yang sangat efisien, dengan hanya ribuan parameter,
berhasil mencapai akurasi pengujian yang kompetitif (hingga = 97% untuk Iris, = 94% untuk
Breast Cancer, dan = 78% untuk Diabetes). Temuan ini memvalidasi efektivitas TRM sebagai
solusi deep learning yang ringan dan terfokus pada penalaran untuk tugas klasifikasi.

Kata kunci—Tiny Recursion Model (TRM), Klasifikasi, Efisiensi Parameter, Penalaran
Rekursif, Deep Learning.

Abstract

Current trends in deep learning are dominated by models with billions of parameters,
which achieve state-of-the-art performance but inherently introduce significant challenges in
terms of computational cost, energy consumption, and deployment efficiency in resource-
constrained environments. This situation creates a serious gap between peak Al performance and
its practical adoption in edge computing, thereby necessitating the development of architectures
that prioritize high parameter efficiency and superior reasoning capability rather than sheer
model scale. This study implements and evaluates the Tiny Recursion Model (TRM), an
architecture designed to emphasize recursive reasoning with a minimal number of parameters,
for tabular data classification tasks. The proposed approach employs a custom TRM
implementation in Keras/TensorFlow, where a two-layer neural network with shared weights
iteratively refines its predictions through recursive processing over ten steps. The experiments
are conducted on three standard classification datasets: Iris, Breast Cancer, and Diabetes. The
results demonstrate that the highly efficient TRM, consisting of only thousands of parameters,
achieves competitive test accuracies (up to approximately 97% on Iris, 94% on Breast Cancer,
and 78% on Diabetes). These findings validate the effectiveness of TRM as a lightweight deep
learning solution that emphasizes reasoning-centric learning for classification tasks.

Keywords—Tiny Recursion Model (TRM), Classification, Parameter Efficiency, Recursive
Reasoning, Deep Learning.
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1. PENDAHULUAN

Tren deep learning saat ini didominasi oleh model skala miliaran parameter, yang berhasil
mencapai kinerja state-of-the-art, namun secara inheren menimbulkan tantangan besar dalam
biaya komputasi, konsumsi energi, dan efisiensi deployment di lingkungan dengan sumber daya
terbatas (edge computing). Fenomena "Bigger is Better" ini telah menciptakan krisis efisiensi [1],
di mana hanya sedikit laboratorium dengan sumber daya masif yang mampu mengembangkan
model SOTA (State-of-the-Art) terbaru. Keterbatasan ini menghambat adopsi Al canggih di
lingkungan komputasi terbatas dan meningkatkan carbon footprint global dari pelatihan Al [2].
Filosofi di balik Tiny Recursion Model (TRM) adalah tantangan langsung terhadap paradigma
ini, dengan berfokus pada peningkatan kemampuan penalaran melalui penggunaan bobot yang
dibagikan secara rekursif, bukan dengan menumpuk lapisan unik yang masif. Model
konvensional seperti Transformer cenderung unggul dalam memorasi pola data skala besar,
namun seringkali menunjukkan keterbatasan pada tugas yang memerlukan penalaran, manipulasi
simbolik, atau perbaikan jawaban secara iteratif [3]. TRM pada awalnya dikembangkan untuk
tugas-tugas penalaran diskrit dan kompleks, seperti memecahkan Sudoku dan puzzle ARC-AGI,
di mana model kecil dengan 7 juta parameter terbukti mengungguli LLM raksasa karena
metodologi pemecahan masalahnya yang iteratif. Pendekatan TRM memanfaatkan rekursi (time-
unrolling) untuk secara efektif meningkatkan kedalaman komputasi model tanpa meningkatkan
jumlah parameter, menawarkan alternatif yang layak dan efisien.

Sejumlah penelitian telah menyoroti masalah skalabilitas model deep learning modern.
Penelitian oleh Strubell et al. [2] dan Schwartz et al. [1] secara kritis membahas carbon footprint
dan biaya finansial dari pelatihan model NLP yang besar, menekankan perlunya arsitektur yang
lebih efisien. Lebih lanjut, analisis oleh Kaplan et al. [4] menunjukkan bahwa kinerja model
seringkali berskala secara logaritik dengan jumlah parameter, data, dan komputasi, yang secara
tidak langsung membenarkan tren penskalaan. Namun, penelitian oleh Rae et al. [5] mengenai
Chinchilla menunjukkan bahwa pelatihan optimal memerlukan korelasi ketat antara ukuran model
dan jumlah data, memperkuat argumen untuk desain arsitektur yang lebih hemat. Kebutuhan
untuk model yang ringan dan mudah digunakan di perangkat edge juga didukung oleh studi He
et al. [6] tentang kompresi model dan kuantisasi. Konsep rekursi dalam jaringan saraf bukanlah
hal baru. Recursive Neural Networks (RNNs) digunakan oleh Socher et al. [7] untuk analisis
sentimen berdasarkan struktur sintaksis kalimat. Namun, yang lebih relevan dengan filosofi TRM
adalah model yang menggunakan loop iteratif untuk pemurnian jawaban. Hierarchical Reasoning
Model (HRM) [8] menjadi prekursor langsung TRM, yang menggunakan dua jaringan terpisah
untuk penalaran dan perencanaan. Studi oleh Lake et al. [3] dan De Raedt et al. [9] meneliti
pentingnya penalaran simbolik dan rekursif untuk generalisasi manusia, terutama pada tugas
meta-learning dan program synthesis. Pendekatan iteratif juga dieksplorasi dalam konteks visual,
di mana model seperti Recurrent Attention Mechanism (RAM) oleh Mnih et al. [10]
menggunakan langkah berulang untuk fokus pada bagian-bagian penting dari input. Dalam bidang
pemodelan sekuens, Universal Transformer oleh Dehghani et al. [11] juga menerapkan jaringan
yang sama secara rekuren pada urutan input temporal, menciptakan kedalaman komputasi melalui
waktu, serupa dengan konsep TRM. Untuk mengatasi masalah ukuran model, beberapa penelitian
berfokus pada teknik efisiensi parameter. Karya Lan et al. [12] memperkenalkan ALBERT, yang
menggunakan parameter sharing di antara lapisan Transformer, secara signifikan mengurangi
jumlah parameter. Konsep weight tying seperti yang digunakan pada model RNN tradisional [13]
juga menjadi dasar teoritis mengapa TRM berfungsi: menggunakan parameter yang sama untuk
komputasi yang berbeda membantu model mempelajari representasi yang lebih umum dan
fungsional. Penelitian tentang knowledge distillation oleh Hinton et al. [14] juga menunjukkan
bahwa model kecil dapat mencapai kinerja model besar dengan berfokus pada pemahaman relasi
internal data. Selain itu, teknik pruning dan kuantisasi [15], [16] juga telah terbukti mengurangi
ukuran model pasca-pelatihan, melengkapi arsitektur yang efisien seperti TRM. Dalam domain
klasifikasi data tabular, model konvensional seperti Random Forest dan Gradient Boosting masih
dominan [17]. Namun, penelitian oleh Grinsztajn et al. [18] mulai membandingkan efektivitas
Transformer dan MLP dengan model klasik. Kebutuhan akan model deep learning yang efisien
dan andal [19], [20] untuk klasifikasi tabular di edge semakin meningkat [21], terutama untuk
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aplikasi medis dan monitoring industri. TRM menempatkan dirinya sebagai jembatan antara
kebutuhan akan penalaran mendalam dan tuntutan efisiensi komputasi untuk tugas klasifikasi data
terstruktur.

Penelitian ini bertujuan untuk menguji hipotesis bahwa prinsip inti TRM dapat berhasil
diterapkan pada tugas klasifikasi data tabular standar, mengadaptasi dan mengimplementasikan
arsitektur dasar TRM dalam framework Keras/TensorFlow, Mengevaluasi kinerja model TRM
yang parameter-efisien pada tiga tugas klasifikasi standar (Iris, Breast Cancer, dan Diabetes), serta
Menganalisis bagaimana proses peningkatan rekursif berkontribusi pada akurasi klasifikasi pada
data tabular.

2. METODE PENELITIAN

Penelitian ini menerapkan arsitektur Tiny Recursion Model (TRM) yang dimodifikasi
pada tiga dataset klasifikasi tabular standar. Metodologi ini dirancang untuk memvalidasi
efektivitas arsitektur rekursif dan efisien parameter pada tugas klasifikasi umum.

2.1 Dataset

Tiga dataset klasifikasi yang umum digunakan dan memiliki karakteristik yang berbeda

dipilih untuk menguji generalisasi model dengan pembagian data 80% untuk training dan 20%
untuk testing.

1. Iris. Dataset standar untuk klasifikasi dengan 150 sampel dan 4 fitur numerik. Tujuannya

adalah mengklasifikasikan spesies bunga (3 kelas). Dataset ini digunakan untuk menguji
kemampuan dasar model dalam mengidentifikasi batas keputusan linier dan non-linier.

2. Breast Cancer (Wisconsin). Dataset yang melibatkan 569 sampel dan 30 fitur, bertujuan
mengklasifikasikan tumor sebagai jinak (Benign) atau ganas (Malignant) (2 kelas).
Dataset ini menguji kinerja TRM pada dimensi fitur yang lebih tinggi dan masalah biner.

3. Diabetes (Pima Indians). Dataset yang melibatkan 768 sampel dan 8 fitur diagnostik,
bertujuan memprediksi apakah seorang pasien akan menderita diabetes (2 kelas). Dataset
ini dipilih karena mengandung nilai yang hilang (diwakili sebagai nol), yang menguji
ketahanan model terhadap data yang bising (meskipun penanganan nilai hilang tidak
eksplisit).

2.2 Parameter Eksperimen

Untuk menjaga fokus pada efisiensi dan konsistensi, model TRM dilatih menggunakan
beberapa parameter yang dapat dilihat pada tabel berikut:
Tabel 1 Parameter

Parameter Nilai Deskripsi
Epochs 100 Jumlah iterasi pelatihan.
Batch Size 16 Jumlah sampel per pembaruan gradien.
Optimizers Adam Algoritma optimasi standar.
Learning Rate 10-3 Tingkat pembelajaran.
Loss Function Categorical Digunakan karena semua target diubah menjadi
Crossentropy one-hot encoded.
Metriks Evaluasi | Akurasi Metrik utama kinerja model.
Langkah Rekursi | 10 Jumlah kali Core Network diulang.
2.3 Arsitektur Model

Tiny Recursion Model (TRM) diimplementasikan sebagai model kustom Keras yang
terdiri dari dua komponen utama dengan bobot bersama (weight sharing):
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TRM Core Network (f): Jaringan saraf dua lapis kecil (Dense) yang bobotnya dibagikan
dan diterapkan berulang kali. Jaringan ini menerima concatenated input yang terdiri dari
Embedded Input (x), Current Answer Embedding (y), dan Latent State (z).

External Layers: Lapisan Embedding awal dan lapisan Output akhir yang unik untuk

model.
Arsitektur Model

Data input (X)

}

Embedding Layer
(Proygksi Input)

}

Initial State
- Input Embedding (x)
- Answer Embedding (yo)
Latent State (z0)

}

Recursive Loop

!

TRM Core (f)

!

Final Answer Embedding

}

Output Layer
(Softmax)

}

Probabilitas Kelas

Gambar 1 Arsitektur Model
Gambar 1 merupakan arsitektur dari TRM model yang terdiri dari beberapa komponen

sebagai berikut:

1.
2.
3.

Input Layer: Menerima data fitur (X)
Embedding Layer
Lapisan Dense unik yang memproyeksikan input fitur (X) menjadi representasi dimensi
tersembunyi (x), serta menginisialisasi Answer Embedding awal (y0) dan Latent State
awal (z0).
Recursive Loop: Bagian utama, di mana TRM Core Network (f) diulang.
a. Input ke f: [x, yt, zt].
b. Output f: Menghasilkan pembaruan status laten (zt+1) dan pembaruan answer
embedding (yt+1)
c. Weight Sharing: f mempertahankan bobot yang sama di semua 10 langkah
perulangan.
Output Layer: Lapisan Dense unik terakhir yang menerima Answer Embedding yang
dimurnikan (yT) dan memproyeksikannya ke ruang kelas, menggunakan aktivasi softmax
untuk menghasilkan probabilitas prediksi (P).




132

2.4 Cara Kerja Model Pada Kasus Klasifikasi

TRM adalah pendekatan minimalis untuk penalaran rekursif yang menantang tren model
Al yang semakin besar. TRM hanya menggunakan satu jaringan saraf yang sangat kecil,
seringkali hanya dengan 7 juta parameter (7M), yang jauh lebih sedikit dibandingkan model
bahasa besar (LLM) seperti DeepSeek R1 atau Gemini, menggunakan jaringan saraf dua lapis
tunggal yang parameter-parameternya dibagikan dan diterapkan secara berulang (rekursif).
Sementara untuk kasus klasifikasi TRM menggunakan mekanisme draft-and-refine untuk
penalaran iteratif yang disesuaikan untuk klasifikasi yang meliputi beberapa tahap sebagai
berikut:
1. Inisialisasi. Input fitur disematkan ke vektor x. Vektor Answer Embedding (y) dan Latent

State (z) diinisialisasi. y0 bertindak sebagai tebakan atau representasi jawaban awal.
2. Fase Rekursif. Selama 10 langkah (T=10)
a. Pada setiap langkah t, status penalaran saat ini (zt) dan answer embedding saat
ini (yt) digabungkan dengan fitur input (x).
b. Input gabungan ini dimasukkan ke TRM Core Network (), yang secara serentak
memproses dan memurnikan kedua status tersebut, menghasilkan zt+1 dan yt+1.
c. z (Latent State): Berfungsi sebagai scratchpad mental model, menyimpan
informasi penting yang dibutuhkan untuk langkah penalaran berikutnya.
d. y (Answer Embedding): Secara bertahap bergeser mendekati representasi yang
optimal untuk kelas yang benar.
3. Prediksi Akhir: Setelah langkah rekursi terakhir, Answer Embedding yang dimurnikan
(y10) dimasukkan ke lapisan Output akhir. Lapisan ini melakukan transformasi akhir dan
menghasilkan probabilitas kelas melalui fungsi softmax.

‘Workflow Model

Siklus Rekursi ke — t
(misalnya t =5 dari 10)

Input TRM Core (f)

- Input Embedding (x)
- Answer Embedding (y;)
- Latent State (z)

!

TRM Core
! (Weight Sharing) 1
,,,,,,,,,,,, |

Output Output
New answer (yt+1) New latent (z++1)

! }

Kembali k¢ Input TRM Core pada siklus t+1
Jika t < threshold, lakukan iterasi lagi

}

Final Answer Embedding (y3)

Gambar 2. Cara Kerja Model Pada Kasus Klasifikasi




Hi33

3. HASIL DAN PEMBAHASAN

3.1 Analisis Hasil Dataset Iris

3.1.1 Classification Report dan Akurasi Akhir

Gambar 3 menunjukkan bahwa kinerja model sangat kuat dan akurat. Ini menunjukkan
kemampuan TRM yang kecil dan rekursif untuk memisahkan ketiga kelas Iris dengan batasan
yang jelas. Nilai yang sangat tinggi untuk ketiga metrik inti menunjukkan bahwa model memiliki
keseimbangan yang baik antara memprediksi positif dengan benar (Precision) dan menemukan
semua positif yang relevan (Recall). Model mencapai kinerja sempurna untuk kelas ini,
menunjukkan pemisahan linier yang sangat jelas. Variasi kecil ini mengindikasikan bahwa satu
sampel sulit diklasifikasikan dengan benar (dikonfirmasi oleh Confusion Matrix di bawah),

namun secara keseluruhan kinerja kelas non-trivial tetap luar biasa.
-- Hasil Evaluasi TRM Akhir (Iris) ---
Akurasi Pengujian Akhir: ©.9667

Classification Report:

precision recall fi-score support

2] 1.00 1.00 1.00 10

1 1.00 0.90 0.95 10

2 0.91 1.00 0.95 10

accuracy 0.97 30
macro avg 0.97 0.97 0.97 30
weighted avg 0.97 0.97 0.97 30

Gambar 3 Classification Report & Akurasi Dataset Iris

3.1.2  Akurasi dan Loss per Epoch

Gambar 4 menjelaskan bahwa akurasi pelatihan mencapai overfit (1.00) dengan cepat,
namun Akurasi Validasi tetap tinggi dan stabil di 0.97 sejak sekitar Epoch 50. Stabilitas ini
menunjukkan bahwa model TRM mampu mempertahankan kemampuan generalisasi pada data
yang belum pernah dilihat, meskipun dengan parameter yang sangat terbatas. Peningkatan
perlahan pada Loss Validasi (overfitting ringan) dikarenakan Akurasi Pelatihan mencapai 1.00,
namun peningkatannya minimal. Hal ini menunjukkan bahwa regularization implisit dari bobot
bersama TRM membantu mengendalikan overfitting yang parah.

Akurasi Model TRM - Iris Loss Model TRM - Iris
1.00 JV[\\_/J_V — Loss Latih
/—/\ A/-/ 08 Loss Validasi
0.95 ’* !
v 0.6
— 090 !
g g
2 S o4
0.85 \
02 |
V\ \
0.80 U
— Akurasi Latih \/"\ n el
Akurasi Validasi 00
0 20 40 60 80 100 0 20 40 60 80 100

Epoch Epoch
Gambar 4 Akurasi dan Loss Dataaset Iris

3.1.3  Confusion Matrix

Gambar 5 merupakan confusion matrix dataset iris yang menjelaskan bahwa Hanya satu
sampel yang diklasifikasikan salah. Yaitu, satu sampel dari True Label 1 (versicolor)
diklasifikasikan sebagai Predicted Label 2 (virginica). Hasil yang hampir sempurna dimana hanya
Kelas 1 yang memiliki satu kesalahan prediksi, yang konsisten dengan Recall 0.90 pada
Classification Report.
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Confusion Matrix TRM - Iris
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Gambar 5 Confusion Matrix Dataset Iris

True label

0
Predicted label

3.2 Analisis Hasil Dataset Breast Cancer

3.2.1 Classification Report dan Akurasi Akhir

Gambar 6 menjelaskan bahwa akurasi yang sangat baik untuk tugas medis dengan
dimensi fitur yang tinggi. Ini membuktikan bahwa mekanisme penalaran rekursif TRM efektif
dalam memproses dan memilah fitur-fitur yang relevan. Model sangat baik dalam
mengidentifikasi kasus ganas yang sebenarnya (95% dari semua kasus ganas ditemukan), yang
sangat krusial dalam diagnosis medis (False Negatives diminimalisir). Namun, Precision yang
sedikit lebih rendah (0.89) berarti ada beberapa kasus jinak yang salah diprediksi sebagai ganas.
Model sangat presisi dalam memprediksi tumor jinak (hanya 3% kesalahan), tetapi melewatkan
beberapa kasus jinak yang diklasifikasikan sebagai ganas. Sebagai tambahan, Nilai rata-rata
tinggi menunjukkan keseimbangan yang kuat secara keseluruhan.

-- Hasil Evaluasi TRM Akhir (Breast Cancer) ---
Akurasi Pengujian Akhir: ©.9386

Classification Report:

precision recall fi-score  support

(2] 0.89 0.95 0.92 42

1 0.97 0.93 0.95 72

accuracy 0.94 114
macro avg 0.93 0.94 0.93 114
weighted avg 0.94 0.94 0.94 114

Gambar 6 Classification Report dan Akurasi Dataset Breast Cancer

3.2.2  Akurasi dan Loss per Epoch

Gambar 7 menjelaskan bahwa akurasi validasi menunjukkan stabilitas yang sangat baik
setelah Epoch 50. Model mencapai kinerja puncaknya relatif cepat. Stabilitas ini menunjukkan
bahwa TRM yang kecil tidak terlalu sensitif terhadap data pelatihan, mempertahankan
kemampuan generalisasi yang kuat. Kesenjangan yang lebar antara Loss Pelatihan dan Loss
Validasi. Meskipun Akurasi Validasi tetap stabil, peningkatan Loss Validasi yang stabil
menunjukkan bahwa model mulai menghafal detail data pelatihan, bukan lagi meningkatkan
kemampuan generalisasinya. Ini wajar mengingat TRM adalah model yang sangat efisien.

Akurasi Model TRM - Breast Cancer Loss Model TRM - Breast Cancer

1.000 = Loss Latih
10 — Loss Validasi
0.975

0.950

0.925

Akurasi
Loss

0.900

0.875

0850 oz ]
—— Akurasi Latih
0825 —— Akurasi Validasi 00

o 20 40 60 80 100 o 20 40 60 80 100
Epoch Epoch

Gambar 7 Akurasi dan Loss Dataset Breast Cancer
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3.2.3  Confusion Matrix

Gambar 8 menjelaskan bahwa dataset tidak seimbang, Kelas 1 lebih banyak (72 sampel).
5 kasus tumor ganas (True Label 0) salah diprediksi sebagai jinak, 2 kasus jinak (True Label 1)
salah diprediksi sebagai ganas. Kesalahan FN (5 sampel) lebih banyak terjadi. Dalam konteks
medis, False Negative (diagnosis "jinak" pada kasus yang sebenarnya "ganas") adalah kesalahan
yang paling fatal. Meskipun akurasi tinggi, TRM perlu dioptimalkan lebih lanjut untuk
meminimalkan False Negatives.

Confusion Matrix TRM - Breast Cancer

o.. 2

True label
8 g

8

8

s.
.. 1
0 1

Predicted label

5]

Gambar 8 Confusion Matrix Dataset Breast Cancer
3.3 Analisis Hasil Dataset Breast Cancer

3.3.1 Classification Report dan Akurasi Akhir

Gambar 9 menunjukkan bahwa akurasi menurun dibandingkan dua dataset sebelumnya.
Ini wajar karena kompleksitas dan sifat noisy dari Dataset Diabetes (nilai nol yang ambigu dan
rasio fitur-sampel yang berbeda). Nilai Precision seimbang untuk kedua kelas, menunjukkan
bahwa ketika model memprediksi Non-Diabetes (0) atau Diabetes (1), prediksinya cukup andal.
Model lebih baik dalam mengidentifikasi individu Non-Diabetes (Recall 0.82) dibandingkan
individu Diabetes (Recall 0.72). Ini berarti model melewatkan cukup banyak kasus diabetes yang
sebenarnya (tingginya False Negatives). Nilai F1 yang lebih rendah ini mencerminkan tantangan
inherent dataset dan menunjukkan bahwa model TRM pada konfigurasi ini belum sepenuhnya
optimal untuk dataset ini.

Classification Report:
precision recall fil-score  support

2] 0.78 0.82 0.80 49

1 0.76 0.72 0.74 40

accuracy 0.78 89
macro avg 0.77 0.77 0.77 89
weighted avg 0.77 0.78 0.77 89

Gambar 9 Classification Report dan Akurasi Dataset Diabetes

3.3.2  Akurasi dan Loss per Epoch

Gambar 10 menjelaskan bahwa akurasi pelatihan sangat fluktuatif (turun naik tajam)
hingga mencapai 1.00. Akurasi Validasi sangat rendah dan sangat fluktuatif, berkisar antara 0.65
hingga 0.80. Fluktuasi ekstrem, terutama pada Akurasi Validasi, menunjukkan bahwa model
kesulitan untuk menemukan permukaan keputusan yang stabil. Setiap pembaruan bobot
tampaknya memiliki dampak besar pada generalisasi model. Loss Pelatihan mendekati 0, tetapi
Loss Validasi meningkat tajam dan menunjukkan lonjakan ekstrem, mencapai puncak di atas
2.50. Terjadi overfitting yang parah dan Loss Validasi menunjukkan tren divergensi
(menyimpang jauh) dari Loss Pelatihan. Lonjakan Loss Validasi yang tajam mengindikasikan
bahwa model kecil TRM, meskipun rekursif, mungkin tidak memiliki kapasitas atau
regularization yang cukup untuk menstabilkan diri pada data yang sangat noisy seperti Diabetes.
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Akurasi Model TRM - Diabetes Loss Model TRM - Diabetes

— Loss Latih

1.00 —— Akurasi Latih
— Loss Validasi N /\

—— Akurasi Validasi

0.95

Epoch Epoch

Gambar 10 Akurasi dan Loss Dataset Diabetes

3.3.3  Confusion Matrix

Gambar 11 menunjukkan bahwa 11 kasus diabetes (True Label 1) salah diprediksi
sebagai Non-Diabetes. 9 False Positives (FP): 9 kasus Non-Diabetes (True Label 0) salah
diprediksi sebagai Diabetes. Model menunjukkan bias yang sedikit lebih tinggi terhadap prediksi
kelas 0 (Non-Diabetes), yang menyebabkan tingginya False Negatives. Hal ini konsisten dengan
Recall yang lebih rendah pada Kelas 1 (Diabetes).

40
Confusion Matrix TRM - Diabetes

&

8

True label

Predicted label 10

Gambar 11 Confusion Matrix Dataset Diabetes

3.4 Ablation Study dan Komparasi Model
Untuk mengatasi overfitting yang parah dan fluktuasi Loss Validasi yang ekstrem pada
Dataset Diabetes (yang terlihat pada model TRM baseline), dilakukan Ablation Study dengan
membandingkan tiga konfigurasi model:
1. TRM Baseline: Tanpa regularization eksplisit.
2. TRM + Dropout: Menambahkan lapisan Dropout (20%) di TRM Core
3. TRM + L1/L2 Regularization: Menambahkan penalti L1 (10-5) dan L2 (10-4) pada bobot
kernel lapisan Dense di TRM Core.

Hasil eksperimen menunjukkan bahwa penambahan Dropout (strategi pemaksaan
sparsitas) justru menyebabkan underfitting dan menurunkan Akurasi Validasi secara
signifikan.Sebaliknya, penambahan L1/L2 Regularization mampu mengontrol overfitting dengan
menekan nilai bobot, namun tanpa mematikan neuron secara permanen, yang seharusnya ideal
untuk model berbobot bersama. Classification Report dan Akurasi dapat dilihat pada gambar 12.
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-- Hasil Evaluasi TRM Akhir (dengan L1/L2 Reg) (Diabetes) ---
Akurasi Pengujian Akhir: ©.7079

Classification Report:

precision recall fil-score  support

2] 0.76 0.69 0.72 49

1 0.66 0.72 0.69 40

accuracy 0.71 89
macro avg 0.71 0.71 0.71 89
weighted avg 0.71 0.71 0.71 89

Gambar 12 Classification Report dan Akurasi Ablation Study Dataset Diabetes

Sementara untuk Akurasi dan Loss serta Confusion Matrix di tunjukkan pada gambar 13
dan 14.

Akurasi Model TRM (L1/L2 Reg) - Diabetes Loss Model TRM (L1/L2 Reg) - Diabetes
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Gambar 13 Akurasi dan Loss Ablation Study Dataset Diabetes

Confusion Matrix TRM (L1/L2 Reg) - Diabetes
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Gambar 11 Confusion Matrix Ablation Study Dataset Diabetes
Sebagai tambahan, Tabel 2 menyajikan perbandingan akurasi pengujian TRM dengan
model-model machine learning dan deep learning konvensional yang relevan dari literatur.

Dataset TRM SVM Random Forest MLP
Iris ~96.67% | =96.00% [22] ~96.10% [23] ~96.00% [22]
Breast Cancer |~93.86% | =97.80% [24] ~98.50% [25] ~95.00% [26]
Diabetes ~78.00% |=86.00% [27] ~77.00% [28] ~77.54% [29]

4. KESIMPULAN

Penelitian ini berhasil mengimplementasikan konsep Tiny Recursion Model (TRM) pada
kasus klasifikasi data tabular, memvalidasi hipotesis bahwa arsitektur yang sangat efisien dalam
parameter dapat mencapai kinerja kompetitif dengan memanfaatkan penalaran rekursif. Model
TRM kustom, yang beroperasi dengan bobot bersama dan mekanisme draft-and-refine iteratif,
terbukti efektif pada berbagai jenis dataset. Temuan utama meliputi:
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1. TRM mencapai akurasi luar biasa sebesar 96.67% pada Dataset Iris dan 93.86% pada
Dataset Breast Cancer. Kinerja ini menunjukkan bahwa TRM unggul dalam memproses
data dengan batas keputusan yang relatif jelas, memanfaatkan effective depth rekursifnya
untuk memurnikan representasi fitur.

2. Meskipun model pelatihan mencapai overfitting ringan (akurasi pelatihan 100%),

Akurasi Validasi pada Iris dan Breast Cancer tetap stabil, membuktikan kemampuan
TRM untuk mempertahankan generalisasi pada tugas-tugas yang terstruktur dengan baik.

3. Kinerja TRM menurun signifikan pada Dataset Diabetes (akurasi 79%) yang memiliki

tantangan data yang noisy dan ambigu (nilai nol). Fluktuasi Loss Validasi yang ekstrem
dan divergensi Loss yang parah pada kasus ini menunjukkan bahwa model TRM yang
sangat kecil, tanpa regularization tambahan, rentan terhadap overfitting dan
ketidakstabilan ketika dihadapkan pada data yang lebih kompleks dan kurang terstruktur.

5. SARAN

Berdasarkan hasil eksperimen dan keterbatasan yang teridentifikasi, beberapa saran untuk

pengembangan dan penelitian di masa depan adalah:

[1]
[2]

[3]
[4]
[5]
[6]
[7]

1. Mengingat tingginya overfitting yang teramati pada Loss Validasi, terutama pada Dataset
Breast Cancer dan Diabetes, disarankan untuk menguji penambahan teknik regularization
eksplisit seperti Dropout atau L2 Regularization langsung di dalam TRM Core Network
untuk menstabilkan pelatihan.

2. Melakukan eksperimen dengan jumlah langkah rekursi yang bervariasi. Mungkin Dataset

Diabetes memerlukan langkah penalaran yang lebih banyak untuk memproses ambiguitas
data, atau justru memerlukan $\text{T}$ yang lebih sedikit untuk mencegah overfitting
yang cepat.

3. Menerapkan strategi imputation yang lebih canggih (misalnya, Mean/Median Imputation

atau K-Nearest Neighbors Imputation) pada Dataset Diabetes untuk mengganti nilai nol
yang ambigu, sebelum dimasukkan ke TRM. Hal ini dapat meningkatkan stabilitas dan
akurasi secara keseluruhan.
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